#### The Fire Risks of High-Rise and Purpose-Built Blocks of Flats in England: What Can (and Could) Official Fire Incident Data Tell Us?



Stretford House, Greater Manchester

#### Dr Stuart Hodkinson

Andy Turner

University of Leeds

#### **Phil Murphy**

Residential High-Rise Fire Safety Management Adviser





Research England

# About us



Phil Murphy is an independent consultant advising landlords and responsible persons on fire safety management of tall residential buildings. He was lead technical fire safety author of the Housing Health and Safety Rating System (HHSRS) Addendum for High-Rise Residential Buildings. A former firefighter and Fire Prevention Officer (1997-2009) with GMFRS, Phil also has ten years private sector experience of managing fire safety across national portfolios of large and complex buildings. He also spent over a decade as a resident of high-rise blocks.

phil@manchestersustainablecommunities.com



Stuart Hodkinson is Associate Professor of Critical Urban Geography at the University of Leeds specialising in residents' experiences of housing regeneration. Stuart has worked with resident groups for past 15 years. His most recent book is called *Safe as Houses: Private Greed, Political Negligence and Housing Policy after Grenfell* (MUP, 2019).

s.n.hodkinson@leeds.ac.uk



Andy Turner is a Research Officer in the School of Geography at the University of Leeds. He specialises in computational geography to simulate the future and mitigate risk. His work involves the development and use of geographical data processing methods.

a.g.d.turner@leeds.ac.uk

# Outline

- Post-Grenfell high-rise safety debate
- Remembering the enhanced fire safety risks of high-rise
- Our research: aims, data and analysis
- Findings
- Conclusions



Dr Stuart Hodkinson Andy Turner University of Leeds, UK Phil Murphy Independent High Rise Safety Consultant

July 2021

If you would like a copy of report you can download it for free here: <u>https://t.co/tpOB8gsY5V</u>

## **High-rise fire safety debate**

- Pre-Grenfell regulatory environment (e.g. stay put): 'article of faith' in compartmentation design and falling fatalities in official statistics
- Grenfell Public Inquiry: 'show me the bodies' perspective underplays 'low probability, high consequence events' (Kernick, 2021)
- Our research aimed to better understand what official fire incident data can and could tell us about fire risks in high-rise and other blocks
- Using unpublished fire incident data, we found increased risks of fatality or casualty from type and height of dwelling

"High-rise does not equal high risk!... no evidence from fire statistics to suggest that those living in purpose-built blocks... are at greater danger from fire...Once a fire occurs... the likelihood of a death is actually less than the likelihood of a death when fire occurs in a bungalow or a **house...** the risk to people from fire... in a block of flats is governed primarily by the likelihood of fire occurring and whether smoke alarms are installed, rather than the type of dwelling ... the height of the dwelling ... or the architectural design of **the block**" (LGA Guide. 2011: p.18, p.20)

# Remembering the enhanced fire safety risks of high-rise living

## Vertical communities with limited means of escape

- Much greater probability of fires starting and then going on to affect a potentially much larger population than a simple house fire
- England, high-rise 30 metres+ hold average 81 flats / 154 people
- Grenfell Tower had 120 flats / 340 residents



Typical house >6 exit routes near to fresh air

> Flat dwellers usually have one means of escape: long distance subject to hazards reducing survivability



## Dangers of smoke propagation and defective compartmentation

Life Safety Institute and the Fire Brigade Academy of the Netherlands 2019 experiment in an empty residential care complex: set fire to a settee in a studio flat on the first floor, twenty times over two weeks.

"In all the tests, smoke propagated outside the fire room through several horizontal and vertical routes and sub-routes. This involved both horizontal and vertical smoke propagation to different rooms in the residential building. This means that if only part of a sofa is burning in one room, high-risk situations will occur in several locations in the residential building." (Fire Service Academy 2020: p.3)



# Smoke propagation in residential buildings

The main report on the field experiments conducted in a residential building with internal corridors



#### **Vertical Response Times**

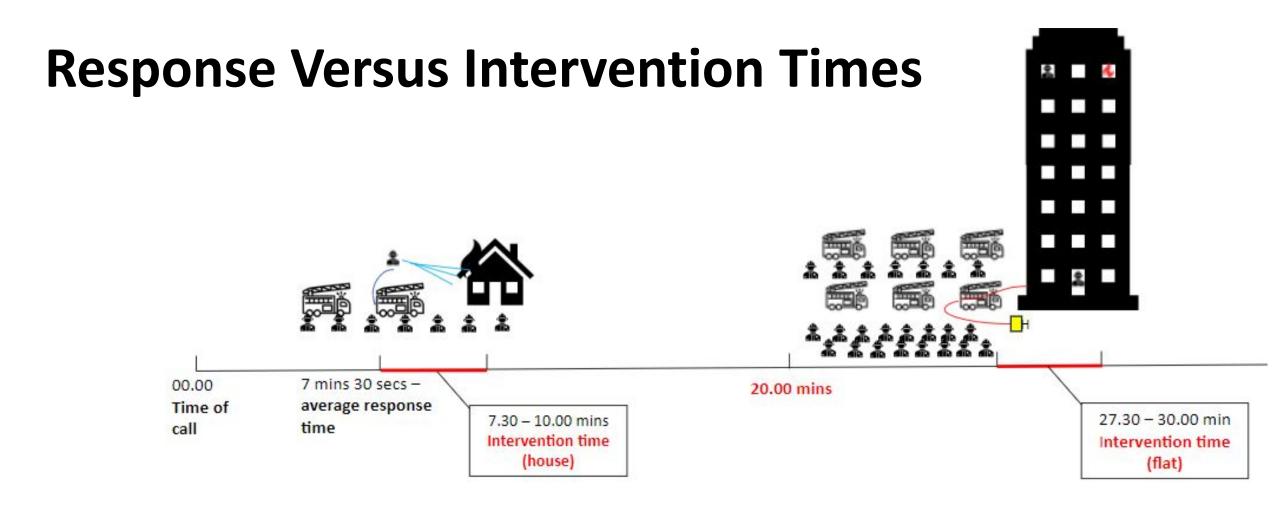
**Fires Location** 

Vertical

Response

Time

**Building Address** 


Following 2005 deadly tower block fire in Stevenage, Hertfordshire FRS tested procedures for high-rise fires

They found it takes <u>20</u> <u>minutes</u> from arrival at the incident to establish a bridgehead with the resources required to deal safely with a fire on the upper floors

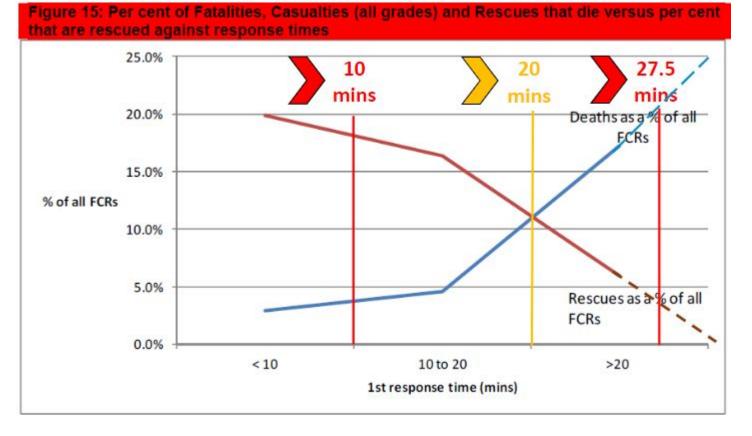
(Steve Seaber, Safer High-rise Living - The Callow Mount Sprinkler Retrofit Project)

Infographic Credit: Brent Brooks, OIC Toronto High Rise Response Unit

STIN TOYON



- Response to intervention in high-rise fires between 27 and 30 minutes from 999 call
- Assumes no delays to the start of firefighting (see later)
- Shrinking redundancy: it used to take 15 minutes for a fire to engulf an average living room - now it takes <5 minutes due to the quantity of plastics in our homes</li>


### **Every Second Counts**

- National average response time is 7 mins 45 seconds (Home Office 2021)
- Government research found:
  - faster response times, greater probability of rescue and survival
  - longer response times correlate to a higher probability of fatality
  - 16 minutes: sharp deterioration in survival chances
  - 20 minutes: likelihood of death becomes higher than survival

Department for Communities and Local Government

2012 updates to the Fire Service Emergency Cover toolkit

Special Service and fire fatality rate response time relationships



## Dangers of high-rise firefighting

"Fire and smoke spread can develop internally by breaching compartments, travelling along shafts and ducting and externally when fire breaks out of windows and through failed wall panels. This can lead to rapid spread to other compartments and floors (above or below), due to the effects of thermals, movement of hot gases and wind speed/pressure. Air currents may lead to smoke within the building being drawn upwards or downwards... Fires may be encountered on more than one floor at a time... Burning material falling from upper floors or propelled by the wind can also spread fires and start secondary fires by igniting combustible materials through open windows, on balconies and around the base of the building... Undivided stairways in high rise buildings have the potential to act as chimneys allowing the products of combustion to rise, which increases the risk of fire and smoke spread to other floors... Fires in refuse or refuse containers can create extensive smoke spread through chutes, other shafts and voids..."

Department for Communities & Local Government



Fire and Rescue Authorities Operational Guidance

GRAS generic risk assessments

> GRA 3.2 Fighting fires –

In high rise buildings

## Our research

What does official data tell us about risk in relation to height and type of dwelling, the effectiveness of compartmentation, the means of escape, and firefighting infrastructure in an individual building?



- Home Office publishes detailed information on every fire incident attended by FRS since April 2009 via online Incident Reporting System (IRS)
- IRS contains over 160 questions that firefighters answer as soon as possible after the incident
- We accessed annual **incident-level data** from 2010/11 to 2019/20 containing 65 data fields (24 additional fields to publicly available data)
- Our analysis focused on **302,130 dwelling fires** (excludes hostels/hotels/B&Bs, nursing/care homes, and student halls) over a **10 year period** (19.6 million data points)

## Data fields

#### Standard published fields

Fire and Rescue Service **Financial Year And Month** Weekday/Weekend Morning/Afternoon/Evening/Nig ht Dwelling / Property Type **Building Special Construction** Occupancy type Occupied normal Alarm system No alarm Alarm system type Alarm reason for poor outcome Ignition to discovery Discovery to call Late call Accidental or deliberate Cause of fire Ignition power

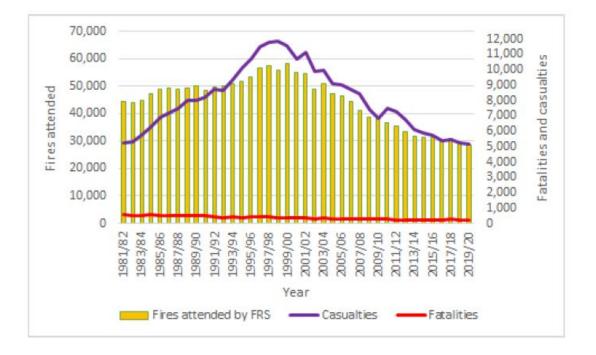
Source of ignition Fire start location Other property affected on arrival Item ignited Item causing spread **Building special construction** Vehicles Personnel Response time Time at scene Fatality or casualty Rescues Evacuations Fire damage extent Total damage extent Fire size on arrival Spread of fire Other property affected at close Rapid fire growth

Multi seated flag How discovered description Compartmentation Means of escape Building occupied at time of incident Action taken by FRS Action taken by non-FRS Were active safety systems present Starting delay description Cause substances dangerous Cause where explosion involved Cause substances explosion Cause explosion stage Cause explosion containers Building floors above ground Building floors below ground Building floor origin (of fire)

#### Additional fields provided by Home Office

Building origin floor size
Building origin room size
Fire size on arrival description
Building evacuation delay description
Building evacuation time description
Fire size on arrival description

# Analysis, Dwelling Fires and Data Issues


- Quantitative analysis: single variable summaries for each field and selected count summaries cross-tabulated with different variables to explore relationships between them
- Explored associations between different dwelling/property types and frequency of fires, rates of fatality or casualty, height of building, floor of fire origin, fire spread and delays to firefighting
- IRS data inconsistencies in recording of building height for 8% of purpose-built incidents (6455 fires): height category (low-rise, medium-rise, high-rise) contradicted by data in 'floors above ground' field or 'floor of fire origin' field
- We assumed FRS more likely to click wrong building-type than input wrong floor height data so we reclassified those fires, which led to some interesting results
- Our methodology and assumptions are explained in detail in our report

| Dwelling Type                              |
|--------------------------------------------|
| Houses                                     |
| Bungalows                                  |
| Purpose-Built Flats 1-3 floors (low-rise)  |
| Purpose-Built Flats 4-9 floors (mid-rise)  |
| Purpose-Built Flats 10+ floors (high-rise) |
| Converted Flats / Maisonettes              |
| Houses of Multiple Occupation (HMOs)       |
| Other Dwellings                            |

# Findings

# **1. Official narrative of falling fires masks increases for certain heights of purpose-built flats**

Primary Dwelling fires attended in England, and related fatalities and casualties, 1980/81 to 2019/20



Home Office 2017

- In contrast to published Home Office statistics, when we reclassified fires based floor date in the IRS, we found a much greater degree of variation in purpose-built fires by building floor height between 2010/11 and 2019/20
- While fires to low-rise blocks have fallen by over 29%, medium-rise fires actually increased by 12.5% over the decade (probably due to increased stock of that type) and high-rise fires fell more slowly than previously thought (6.5%)
- Individual floor height analysis also shows a variable picture (next slide)

# Purpose-built fires by building floor height that increased over decade

| Building height (floors) | 2010/11 | 2019/20 | Change in annual fires between<br>start and end year (%) |
|--------------------------|---------|---------|----------------------------------------------------------|
| 4                        | 898     | 950     | +5.8                                                     |
| 5                        | 294     | 398     | +35.4                                                    |
| 6                        | 187     | 234     | +25.1                                                    |
| 7                        | 91      | 110     | +20.9                                                    |
| 9                        | 99      | 101     | +2.0                                                     |
| 11                       | 68      | 94      | +38.2                                                    |
| 13                       | 70      | 75      | +7.1                                                     |
| 18                       | 26      | 29      | +11.5                                                    |
| 20-43                    | 46      | 59      | +28.3                                                    |

Fires attended by FRS 2010/11 to 2019/20 by height of purpose-built dwelling - change over time

# 2. Once a fire breaks out, high-rise residents are twice as likely to die than in house fires

- bungalow fires are outliers due to the predominance of elderly and disabled residents who are far more vulnerable in the event of fire
- more meaningful comparison is with houses against which purpose-built flat fires have higher rates of casualty and casualties requiring hospitalisation
- high-rise flats have a significantly higher average annual rate of fatalities and casualties, most likely to result in hospitalisations

Comparing decade average rates of fires resulting in fatalities and casualties

|                                                 | Fatalities                              | Non-fatal<br>Casualties | Non-fatal casualties<br>Requiring<br>Hospitalisation | Severe Non-fatal<br>Casualties Requiring<br>Hospitalisation |  |
|-------------------------------------------------|-----------------------------------------|-------------------------|------------------------------------------------------|-------------------------------------------------------------|--|
|                                                 | Per 1000 fires decade average (rounded) |                         |                                                      |                                                             |  |
| Bungalows                                       | 14                                      | 219                     | 90                                                   | 16                                                          |  |
| Houses                                          | 7                                       | 182                     | 79                                                   | 13                                                          |  |
| All Purpose-Built Flats                         | 6                                       | 201                     | 90                                                   | 14                                                          |  |
| Purpose-Built Flats<br>Low-Rise (1-3 Floors)    | 6                                       | 209                     | 93                                                   | 15                                                          |  |
| Purpose-Built Flats<br>Medium-Rise (4-9 Floors) | 4                                       | 172                     | 83                                                   | 9                                                           |  |
| Purpose-Built Flats<br>High-Rise (10+ Floors)   | 14                                      | 217                     | 90                                                   | 20                                                          |  |

# 3. Flat dwellers far more likely to experience a fire in their building and become a victim

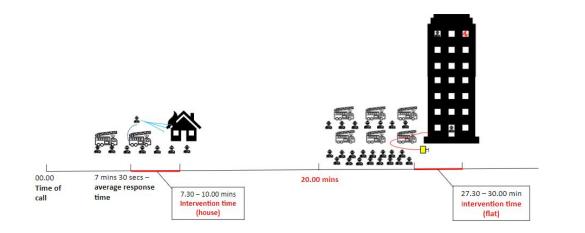
Dwelling fires attended by FRS 2010-11 to 2019-20 by dwelling type and as proportion of English housing stock and population

| Dwelling Type                                    | As % of English<br>Housing Stock<br>using decade<br>mean | As % of England's Fires attended<br>Dwelling Fires using decade mean dwellings of type |      | Fires attended<br>per 10,000<br>people |
|--------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|------|----------------------------------------|
| All dwellings                                    | 100                                                      | 100                                                                                    | 12.6 | 5.4                                    |
| Bungalow                                         | 8.9                                                      | 5.8                                                                                    | 8.3  | 5.5                                    |
| Houses (including HMOs)                          | 70.8                                                     | 59.4                                                                                   | 10.6 | 4.1                                    |
| Purpose-built flats                              | 16.4                                                     | 27.3                                                                                   | 21.0 | 11.8                                   |
| Purpose-Built Flats<br>Low-Rise (up to 5 floors) | 14.4                                                     | 22.8                                                                                   | 19.9 | 10.9                                   |
| Purpose-Built Flats<br>High-Rise (6 floors +)    | 1.9                                                      | 4.5                                                                                    | 29.0 | 19.1                                   |

When fires are normalised by populations living in each dwelling type (using English Housing Survey):

- high-rise (6 floors +) residents nearly 2 x as likely to experience a fire in their building than block below six floors, and nearly 5 x those in a house
- flat dwellers have far higher probability of dying (more than double) or being injured (nearly fourfold) than residents of houses

### 4. Deliberate fires: role of building typology


Purpose-built blocks have additional sites of vulnerability to a fire starting and arson from multiple shared spaces reflected in incident data

- 37.7% high-rise fires (10 floors +) start outside of a dwelling compared to 14.8% for houses
- 16.5% purpose-built fires are arson, compared to 9.9% for houses
- 41% of purpose-built flat fires started outside of a dwelling were deliberate compared to 26.4% for houses



Top: <u>Heights West, Leeds</u>; Bottom left: <u>Trellick Tower</u> Bottom right: <u>Luton Today (2018)</u>

### 5. High-rise: frequent delays to start of firefighting



- delays to firefighting correlate with a far greater likelihood of fire resulting in a fatality or casualty to purpose-built blocks of flats and especially high-rise buildings, jumping from 15.3% to 21.5% where a delay occurs
- house fires see only slight increase in fatality or casualty from 13.7% to 14.2% when a delay happens

|                                                  | Main reason given for delay to firefighting as % of building type fires with delays |            |                                 |                           |                         |                                             |                              |                   |
|--------------------------------------------------|-------------------------------------------------------------------------------------|------------|---------------------------------|---------------------------|-------------------------|---------------------------------------------|------------------------------|-------------------|
| Dwelling /<br>Property Type                      | Building<br>type e.g.<br>high rise                                                  | Large site | Security<br>doors /<br>security | Assault on<br>firefighter | Civi<br>disturbanc<br>e | Fire location not<br>immediately<br>evident | Sent to<br>wrong<br>location | Vehicle<br>access |
| Bungalow                                         | 0.7                                                                                 | 0.2        | 37.0                            | 0.9                       | 0.7                     | 21.6                                        | 16.3                         | 22.7              |
| House (including<br>HMOs)                        | 1.5                                                                                 | 0.6        | 25.5                            | 0.7                       | 0.8                     | 25.0                                        | 16.9                         | 29.0              |
| Purpose-Built<br>Flats High Rise<br>(10+ floors) | 61.8                                                                                | 0.9        | 13.4                            | 0.2                       | 0.1                     | 17.3                                        | 3.8                          | 2.5               |

| Dwelling / Property Type                      | % fires with<br>delay to<br>firefighting |
|-----------------------------------------------|------------------------------------------|
| Houses (including HMOs)                       | 3.0                                      |
| Purpose-Built Flats Low Rise (floors 1-3)     | 5.4                                      |
| Purpose-Built Flats Medium Rise (floors 4-9)  | 9.4                                      |
| Purpose-Built Flats High Rise (floors<br>10+) | 20.1                                     |

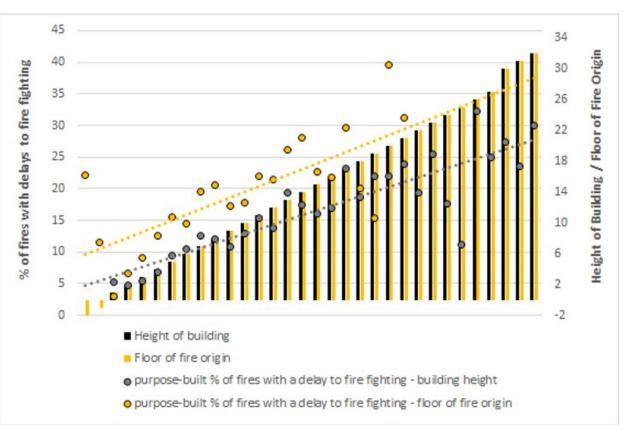
# 6. Fire spread in purpose-built flats more common than assumed



#### Options in the IRS for recording the extent of fire spread

| Limited to item 1st ignited                       |
|---------------------------------------------------|
| Limited to room of origin                         |
| Limited to floor of origin (not whole building)   |
| Limited to 2 floors (not whole building)          |
| Affecting more than 2 floors (not whole building) |
| Whole building                                    |
| Roof space only                                   |
| Roof space and other floors(s)                    |
| External roof only                                |
| Whole Roof (including roof space)                 |

- 1847 (2.3%) purpose-built fires involved significant and unusual fire spread either by FRS arrival or end
  of firefighting: that is every two days on average over the decade.
- fire spread incidents associated with marked increase in likelihood of death or injury: 29.6% fires involved a fatality or casualty, compared to overall rate of 15.5% for purpose-built


### 7. Height increases risk to life in purpose-built fires

Clear positive association between increases in height of building or floor fire starts on and higher rates of fires resulting in a fatality or casualty

- fires from 6th floor upwards more likely to have a fatality or casualty than originating below
- 113 combinations of building height / floor of fire origin pose increased risk to life than house fires

## Frequency of delays to firefighting increases the higher the floor origin of fire in purpose-built fires

- fires starting on 1st floor have a 2.9% rate of delays similar to bungalows and houses - but this rises to 39.5% for fires starting on 20th floor
- 80% of fires between ground floor and 21st floor have a higher % of fatality or casualty when a delay to fire fighting occurs



Fires to purpose-built flats attended by FRS between 2010/11 and 2019/20 experiencing a delay to firefighting by height of building / floor of fire origin

### Conclusions

- Overall trends and averages as presented in official fire statistics reports can hide increased fire risks for blocks of flats of certain heights and types that are clearly present in the data
- Risk increases with height. High-rise is definitely higher risk. An appropriate
  precautionary principle should be re-embedded in regulation and practice in
  association with high-rise residential buildings.
- Fire risk assessors need to be aware and learn from the investigations that followed previous fires and possess a more nuanced, in-depth knowledge of historic incidents and fire statistics
- The Incident Reporting System is not being used to its full potential and needs reform using feedback loop from stakeholders to continually improve, as was the case previously

Thank you for listening and we look forward to any questions today or by future correspondence

Please contact us:

Phil@ManchesterSustainableCommunities.com @MancCommunities

s.n.hodkinson@leeds.ac.uk @stuhodkinson

#### Acknowledgements

This research was funded by Research England's Quality-Related Research Strategic Priorities Fund 2020-21. We are grateful to the Home Office Fire Statistics team for providing us with access to unpublished data and commenting on an earlier version of our data analysis. For clarity, the analysis herein was produced entirely independently and is not endorsed by the Home Office. We would also like to acknowledge the support and advice provided by John Roberts, Chief Fire Officer for West Yorkshire Fire and Rescue Service. We would like to thank Dr Nick Hood from the School of Geography and other reviewers who made helpful suggestions to improve the report. All findings and any errors or omissions contained in this report belong solely to the authors.

### References

British Automatic Fire Sprinkler Association (BAFSA) (2012), Safer High-rise Living: The Callow Mount Sprinkler Retrofit Project (URL)

Department for Communities and Local Government (DCLG) (2013), 2012 updates to the Fire Service Emergency Cover toolkit Special Service and fire fatality rate response time relationships, December, London: DCLG, [URL]

DCLG (2014), Generic Risk Assessment (GRA) 3.2 Fighting Fires – in High Rise Buildings. London: Her Majesty's Stationery Office [URL]

Fire Service Academy (2020). Smoke propagation in residential buildings. The main report on the field experiments conducted in a residential building with internal corridors. Arnhem: IFV

Grenfell Tower Inquiry (2019), Phase 1 Report of the Public Inquiry into the Fire at Grenfell Tower on 14 June 2017. October [URL

Home Office (2021) 'Response times to fires attended by fire and rescue services, England, April 2019 to March 2020', *Home Office Statistical Bulletin 01/21*, 14 January, [url].

Home Office (2021), Fire safety in purpose-built blocks of flats (formerly known as the LGA Guide 2011), <a href="https://www.gov.uk/government/publications/fire-safety-in-purpose-built-blocks-of-flats">https://www.gov.uk/government/publications/fire-safety-in-purpose-built-blocks-of-flats</a>

Kernick, G. (2021), Catastrophe and Systemic Change: Learning from the Grenfell Tower fire and other Disasters. London Publishing Partnership